Showing posts with label Foxboro. Show all posts
Showing posts with label Foxboro. Show all posts

Schneider Electric Process Instruments from Swanson Flo

Schneider Electric Process Instruments from Swanson Flo

A single innovative instrument can improve process control and the performance of any of your production assets, including personnel, equipment, energy use, and inventory. Using multiple systems can enhance the performance of all aspects of your business. 

Schneider Electric's process instrumentation is combined with various industry-leading brands to produce systems, software, and services that significantly improve your operation's economic, safety, and environmental performance. Furthermore, deploying multiple advanced measurement systems will enhance the availability and utilization of all assets on which your success is dependent. 

Foxboro / Schneider Electric Process Instrumentation has been at the forefront of developing numerous breakthrough measurement technologies for decades, including the first D/P cell, the dual-phase Digital Coriolis Mass Flowmeter, the PH10 and PH12 Smart pH sensors and the Magnetic Flowmeter. 

Schneider Electric / Foxboro is the industry leader in performance across a wide range of measurement technologies: 

  • Pressure transmitters with the best-in-class accuracy and the industry's most extended warranties. 
  • Flowmeter technologies include: Magnetic, vortex shedding, and Coriolis provide an unrivaled solution for liquids, gases, and steam. 
  • Process analytical sensors are revolutionizing pH and conductivity measurement. 
  • Temperature transmitters that provide accurate and dependable measurements even in the most extreme conditions 
  • Level measurement devices, including buoyancy and radar, are available for various installation and application options. 
  • Wireless Instruments offers long-range wireless, WirelessHart Mesh network over the cloud dataloggers that are self-contained or battery-powered. 

Process Instrumentation provides accurate, dependable measurement and analysis of pressure, flow, level, temperature, positioner, and process analytical variables for maximum integration and interoperability — all at competitive prices, low cost of ownership, and 24-hour worldwide support from a single source.

Swanson Flo
https://swansonflo.com
800-288-7926

Radar Level Transmitter for Water (and Other Liquids) in Narrow Tanks With Obstructions

The Schneider Electric 80 GHz Radar (FMCW) Level Transmitter for liquids in narrow tanks with internal obstructions.

This device is a non-contact radar level transmitter that uses FMCW technology. It measures distance, level and volume of liquids and pastes. It has an empty spectrum function that filters false reflections caused by equipment inside the tank.
  • LR75 Free Space Radar
  • 80 GHz FMCW technology
  • cQPSus XP
  • 4 -20mA /HART® 7
  • 1/2" NPT Cable Entry
  • Backlit Display
  • (-14.5..580 psig) I (-40 deg F to +302 F) / FKM/FPM Process Seal
  • 1-1/2“ DN40 Lens Antenna
  • 1-1/2“ NPT ASME Process Connection
  • Very low cost of ownership 


Radar Level Transmitters: Frequency, Beam Width, and Beam Width Calculators



Radar level transmitters provide non-contact level measurement. All radar level detectors send microwave beams, emitted from a sensor, to the surface of the liquid in a tank. The electromagnetic waves returns back to the sensor after hitting the surface of the fluid. Radar is the preferred technology for level measurement in many of today’s industrial applications. Newer high-frequency technology (80 GHz) offers advantages in certain application to older low (10 GHz) and mid-frequency (24 GHz) technologies. Selecting the best microwave frequency for your application is crucial. In as much, understanding the relationship between frequency and beam angle is very important.

In this video, Jeff Blair, Offer Manager for level products at Schneider Electric, presents the difference in beam angle at various frequencies. He also demonstrates how to use Beam Angle Calculators to determine beam width at various places in a tank or vessel.

For more information about radar level instrumentation, contact Swanson Flo. Call them at 800-288-7926 or visit their website at https://swansonflo.com.

Swanson Flo Performance - Upstream / Midstream Oil & Gas Pipeline Services and Capabilities

Swanson Flo Performance
Swanson Flo has a long and successful history of providing innovative process control solutions  to the upstream and midstream oil & gas pipeline industry. The have a well-earned reputation for  supplying quality equipment and experienced application engineering with an unrelenting desire to not only meet, but to exceed their customer's goals.

Swanson Flo Performance supports every process control customer with region-based, full-capability service and repair. Their factory-certified technicians provide you with a complete overhaul and repair of the control valves, actuators, and instrumentation. Equipment is fully disassembled, inspected, cleaned, reassembled, calibrated, and tested to meet factory original standards. Swanson Flo Performance utilizes only factory OEM parts to repair your equipment.

 Upstream / Midstream Oil & Gas Pipeline ServicesSwanson Flo Performance Includes:

  • Commissioning - to ensure that equipment performs to expected specifications.
  • Mechanical Inspection - detailed reports on the mechanical health of your valves.
  • Valve Repair - returning the customer's valves to "like new” condition.
  • Onsite Repair - bringing resources and equipment to the customer's facilities.
  • OEM Parts - certified original manufactured parts maintaining highest standards.
  • Re-instrumentation - upgrading performance and equipment to meet ever-changing needs.
  • Site Surveys - gathering plant data for asset management.
  • Training - hands-on technical and practical training custom designed for their customers.

Swanson Flo is a multi-brand factory trained control valve repair center providing factory trained technicians and certified repairs and parts from Foxboro/Schneider Electric and Flowserve Limitorque (notably, Swanson Flo is the only FM approved Limitorque repair facility in the upper-midwest).


For more information, contact Swanson Flo by calling 800-288-7926 or visit their web site at https://swansonflo.com.

Foxboro Schneider Electric Vortex Flow Meters


The Foxboro® intelligent, high performance vortex flowmeter transmits a 4-20 mA or digital multi-drop, and a pulse output signal (as applicable) using HART communication protocol for remote configuration, calibration, and monitoring.

Foxboro vortex flow meters have unique vortex sensing with a lifetime warranty; patented algorithms that improve performance in real-world applications; a broad offering of sizes, materials, and end connections, with the widest flow range available today; ease of configuration using FDT technology, and no moving parts ensures low operating and maintenance costs. They are ideal for applications requiring accuracy for totalizing and batching; utility metering of fluids in the process industries; fuel, air, steam, or gas metering for the measurement of energy in any high use application; or stability and repeatability for process control.

The Foxboro vortex flowmeter is perfect for applications within the upstream and downstream Oil & Gas industries, specifically on high pressure pipeline applications for both gases (and vapors) and liquids.

For more infomration, contact Swanson Flo by calling 800-288-7926 or by visiting https://swansonflo.com.

Guided Wave Radar Transmitters: Accurate and Reliable Level Measurement for the Widest Choice of Installation Options and Applications

guided wave radar level

Guided wave radar transmitters are widely used across different industries. These devices with their simple installation and trouble-free operations help industrial companies save time and money. They are ideal for a large number of process applications ranging from simple to complex.

How Do Guided Wave Radar Transmitters Work?


Guided wave radar transmitters rely on microwave pulses. Since microwaves are not affected by dust, pressure, temperature variations, and viscosity, this type of transmitter produces highly accurate results. 

A low-energy microwave pulse is sent down a probe, and a part of it is reflected back when the pulse hits the process media. The liquid level is directly proportional to the time-domain reflectometry. The time when the pulse is launched and received back is measured to determine the distance from the surface of the media. 

Types of Guided Wave Radar Level Transmitters


Guided wave radar level transmitters are available in different probe configurations. Selecting the right probe is important for successful implementation of the device. While manufacturers offer a range of guided wave radars, most are derived from the three basic probe configurations: single element, twin element, and coaxial.

Single element probe — The single element probe is the most widely used and least efficient device. The device is popular since it is more resistant to the coating of the liquid. 

Twin element probe — The twin element probe is a good, general purpose probe that is generally used in long-range applications. They are ideal in situations where flexible probes are important for successful reading. 

Coaxial probe — The coaxial probe configuration is the most efficient guided wave radar level transmitters. The probes are used in more challenging low-dielectric applications. 

Benefits of Guided Wave Radar Level Transmitters


Dielectric Constant and Reflectivity - Guided WaveRadar (GWR)
(Courtesy of Schneider Electric Foxboro)
Guided wave radar level transmitters provide a range of benefits in different applications. The concentration of the measuring signal is strong and clean. This is due to the narrow path of the signal propagation that reduces the chances of impact by stray signals due to obstacles or construction elements inside the tank. 

Another benefit of guided wave radar level transmitters is that they are easy to install. No mounting holes are required to install the device. This results in cost savings for the organization. The waveguide can be formed to follow the tank’s contours or mounted at an angle. 

The device is ideal in situations where an interface measurement is required. The measuring signals can penetrate the medium deeply, resulting in more accurate results. The waveguide technology is suitable for applications where the medium is subjected to heavy vapors, foam, and dust. 

Guided wave instruments can detect changes in dielectric consents on the boundary of a property. The device can be configured to detect level at both the top and the bottom of a layer of emulsion. 

Industrial Application of Guided Wave Radar


Guided wave radar level transmitters are increasingly being used in process industries. The sensors are used in situations that previously employed ultrasonic, hydrostatics, and capacitance. The accuracy specification of the basic model range is up to ±5mm, while the accuracy of the advanced models is up to ±2mm. 

The device is generally used in industries to take level readings. The readings are used for local indication and visualization in control systems. 

Moreover, guided wave radar level transmitters are also used for managing liquid inventory, determining safety limits, dry run protection, and leak detection. Other applications of guided wave radar level transmitters include communicating low limits to suppliers, automated ordering systems, and streamlining the logistics process. 

Guided radar level measurement is also suitable for bulk solids. The surface type is not restricted to liquids since the reflected waves are guided easily through any medium. Foam formation and turbulent liquid surfaces and different angled surfaces (as is the case with bulk solids) don’t influence the accuracy of the reading.

Selection of Guided Wave Radar Level Transmitters


Selection of guided wave radar level transmitters should be based on the requirements of the task. Generally, the rigid single element probe configuration is ideal for angled installations for flowing liquids. The dual flexible wire probe is suitable for most other common applications. 

A coaxial probe configuration is recommended for liquids that are cleaner with low dielectric constant and with turbulence on the product’s surface. This type of guided wave radar device is also recommended for installations where the probe is near the tank wall or other obstacles. 

Make sure that the device can withstand the range of temperature within the tank. Most GWR devices are rated up to 850 deg F or 450 deg C. You should select a device with added signal strength since this will result in increased reliability and accuracy of the devices. 

Guided wave radar level transmitter with dynamic vapor compensation is recommended where a high level of accuracy is required under a high-pressure environment. The measurement taken from the device can compensate for changes in vapor dielectric, which results in improved accuracy. 

Other factors that should be considered include mounting and proximity. Single probe configuration can be installed almost anywhere. But the single probe configuration can only to apply to specific situations. 

Lastly, the probe length of the device should be of the right length. The length should be according to the measurement rate. This is an important consideration as it can help in ensuring accurate reading with minimum chances of an error. 

Guided wave radar level transmitters can also be used with an agitator. However, certain things must be considered prior to use the device. The probe must be prevented from contacting the agitator blades. Make sure that you confirm the ability of the probe to withstand the force inside the medium. This is important since turbulent on the surface may decrease the accuracy of the measurement. You can install the device in a bypass chamber or stilling well for an agitated tank.

For more information on guided wave level transmitters, contact Swanson Flo by calling 800-288-7926 or by visiting their web site at https://swansonflo.com.

Schneider Electric Foxboro Pressure Transmitter Models 05S/10S/50S


Available in absolute pressure, differential pressure and gauge pressure, the new Schneider Electric Foxboro Models 05S/10S/50S pressure transmitters are designed to make your process more profitable by giving you the opportunity to select your transmitter at the best ratio of performance/price for your application.

Innovative FoxCal™ technology, accuracy expressed as a percentage of reading, 400:1 turndown, Safety SIL2 certification, are some of the exceptional features in the 05S/10S/50S family.
For more information, contact:

Swanson Flo
https://swansonflo.com
800-288-7926

Process Instrumentation for the Chemical Industry

Process Instrumentation for the Chemical Industry
Process Instrumentation for the Chemical Industry (Foxboro - Schneider Electric)
From petrochemicals to agrochemicals, industrial gases to plastics, pigments, and more, the industry that manufactures, processes, transports, and stores thousands of hazardous materials every day requires one thing above all – absolute confidence in the quality, reliability, accuracy, and safety of the devices entrusted with controlling some of the most complex, pressurized, and volatile processes known.

Foxboro’s complete line of robust, field-proven instrumentation provides measurement solutions for temperature, pressure, flow, process analysis, level, and data acquisition. Additionally, our line of valve positioners offers the highest accuracy in the industry.

You may download a PDF version of the Foxboro "Process Instrumentation for the Chemical Industry" brochure here, or view the embedded document below. For more information on Foxboro instrumentation contact Swanson Flo by visiting https://swansonflo.com or by calling 800-288-7926.

Vortex Flowmeters by Schneider Electric / Foxboro

Foxboro Vortex Flowmeters in field
Schneider Electric / Foxboro Vortex flowmeters in field.
Foxboro flowmeters set industry standards in applications requiring accuracy for totalizing and batching in utility metering of fluids. They are ideal for applications within upstream and downstream oil and gas industries, specifically on high-pressure pipeline applications.

Foxboro Vortex Flowmeters
Vortex flowmeter.
Foxboro flowmeters are the highest performing flowmeters on the market, with best-in-class sensing technology. No other competitor's meter can measure accuracy and liquid gas or steam for temperatures up to 800 degrees Fahrenheit. These instruments are designed to be flexible and reliable in harsh process environments. Foxboro vortex flowmeters have unique vortex sensing, with a lifetime warranty, patented algorithms that improve performance and real-world applications. A broad offering of sizes, material, and end connections with the widest flow range available today. Ease of configuration using FTD technology and no moving parts ensures low operating and maintenance costs.

Foxboro vortex transmitters have an on-board LCD indicator configurator for local configuration, and are equipped with Foxboro's patented DirectSense technology, which incorporates the sensor directly into the flow stream to maximize the vortex pull strength. This results in wider rangeability, greater noise immunity, along with unmatched sensitivity. With the Foxboro vortex flowmeter you achieve reliability, repeatability, and a measurement you can trust.
LCD indicator
LCD indicator

For more information on Schneider Electric / Foxboro vortex flowmeters please visit Swanson Flo at https://swansonflow.com or by calling 800-288-7926.

Wireless Process Control Instrumentation

Wireless Process Control Instrumentation
Wireless Process Control Instrumentation Diagram
Manufacturing plants are continually under tremendous pressure with demands for safety, reliability, and efficiency. Unplanned shutdowns and outages have a huge impact effects on plant performance. Lost production, escalating energy costs, unexpected maintenance costs, and heightened safety concerns are the real outcomes of equipment failure. New, developing process technologies must mitigate these plant control realities.

Wireless process control technology is a serious contender in the ongoing effort to improve plant efficiency,  mitigate risk, and increase productivity. Today's wireless transmitters are available for monitoring virtually any process control variable including flow, pressure, level, temperature, pH, Dissolved Oxygen, etc. Very notably, in the harshest environments, these devices reliably transmit critical control data back to central control areas around the clock and without the need for human presence.

The argument for wireless instrumentation is very compelling when you consider installation convenience and cost savings.  Some cost savings estimates run as high as 70%  by eliminating wires and cables, as opposed to the cost when using cables for the same application. And most remarkably, wireless instruments provide additional safety and compliance benefits by keeping maintenance personnel out of dangerous or hazardous areas.

All manufacturing industries are faced with the realities of cost cutting as plant managers endeavor toward continuous process improvement. The need for better solutions is always present, and wireless process instruments certainly appear to fit the bill. But before widespread adaptation of wireless occurs, concerns about reliability, user comfort, and integration must be overcome. However, as plant managers see the downward pressure on deployment and maintenance costs, and as they see improved employee safety and smoother environmental compliance, adoption of wireless instrumentation will accelerate and eventually become ubiquitous in process control.

Introduction to Industrial Control Systems

Industrial Control Systems Control systems are computer-based systems that are used by many infrastructures and industries to monitor and control sensitive processes and physical functions. Typically, control systems collect sensor measurements and operational data from the field, process and display this information, and relay control commands to local or remote equipment. In the electric power industry they can manage and control the transmission and delivery of electric power, for example, by opening and closing circuit breakers and setting thresholds for preventive shutdowns. Employing integrated control systems, the oil and gas industry can control the refining operations on a plant site as well as remotely monitor the pressure and flow of gas pipelines and control the flow and pathways of gas transmission. In water utilities, they can remotely monitor well levels and control the wells’ pumps; monitor flows, tank levels, or pressure in storage tanks; monitor water quality characteristics, such as pH, turbidity, and chlorine residual; and control the addition of chemicals. Control system functions vary from simple to complex; they can be used to simply monitor processes—for example, the environmental conditions in a small office building—or manage most activities in a municipal water system or even a nuclear power plant.

Industrial Control SystemsIn certain industries such as chemical and power generation, safety systems are typically implemented to mitigate a disastrous event if control and other systems fail. In addition, to guard against both physical attack and system failure, organizations may establish back-up control centers that include uninterruptible power supplies and backup generators.

There are two primary types of control systems. Distributed Control Systems (DCS) typically are Supervisory Control and Data Acquisition (SCADA) systems typically are used for large, geographically dispersed distribution operations. A utility company may use a DCS to generate power and a SCADA system to distribute it.

process instruments
Field devices and discreet controllers used in control systems
(Foxboro Schneider Electric).
A control system typically consists of a “master” or central supervisory control and monitoring station consisting of one or more human-machine interfaces where an operator can view status information about the remote sites and issue commands directly to the system. Typically, this station is located at a main site along with application servers and an engineering workstation that is used to configure and troubleshoot the other control system components. The supervisory control and monitoring station is typically connected to local controller stations through a hard- wired network or to remote controller stations through a communications network—which could be the Internet, a public switched telephone network, or a cable or wireless (e.g. radio, microwave, or Wi-Fi) network. Each controller station has a Remote Terminal Unit (RTU), a Programmable Logic Controller (PLC), DCS controller, or other controller that communicates with the supervisory control and monitoring station. The controller stations also include sensors and control equipment that connect directly with the working components of the infrastructure—for example, pipelines, water towers, and power lines. The sensor takes readings from the infrastructure equipment—such as water or pressure levels, electrical voltage or current—and sends a message to the controller. The controller may be programmed to determine a course of action and send a message to the control equipment instructing it what to do—for example, to turn off a valve or dispense a chemical. If the controller is not programmed to determine a course of action, the controller communicates with the supervisory control and monitoring station before sending a command back to the control equipment. The control system also can be programmed to issue alarms back to the operator when certain conditions are detected. Handheld devices, such as personal digital assistants, can be used to locally monitor controller stations. Experts report that technologies in controller stations are becoming more intelligent and automated and communicate with the supervisory central monitoring and control station less frequently, requiring less human intervention.

Swanson Flo can help you with control system questions or challenges. Reach them by calling 800-288-7926 or visiting https://swansonflo.com.

Foxboro Magnetic Flowmeter for Chemical and Process Industries

MagPlus
Based on Faraday’s law of induction, Foxboro magnetic meters are a reliable  ow measurement solution with a lower cost of ownership and maintenance, as well as  eld-proven stability to maximize the availability of  ow measurement.

With a wide range of liners and electrodes, the 9700A  owtube is ideal for the Chemical and Process industries. In combination with the IMT30A, IMT31A and IMT33A transmitters, Foxboro offers an innovative solution designed to meet the demands for all chemical applications such as:
  • Clean liquids
  • Mixing of chemicals
  • Demanding applications including corrosive, abrasive liquids • Rapid variation of the pH value
  • For slurries and pastes with high solids content
  • Drilling applications, mining slurries with large particles

See the embedded brochure below, or download your own PDF from this Swanson Flo link.


Schneider Electric Foxboro Measurement and Control Product Catalog

Measurement and Control Product CatalogSchneider Electric / Foxboro provides customers a complete solution - from instruments in the field to the control room - to enable customers to optimize their assets-people, equipment, plant. With a history of innovation, Foxboro Field Devices provides solutions across a wide range of industries, including Energy, Oil, Gas & Refining, Renewable Fuels, Nutrition And Life Sciences, Process Automation, Water & Wastewater.

Foxboro / Schneider Electric range of products in Measurement and Instrumentation include:
  • Flow
  • Level
  • Pressure
  • Process Liquid Analytical
  • Temperature
  • Control
  • Data Acquisition & Configurator
  • Pneumatic
  • Valve Positioners
  • Accutech
Visit this page on the Swanson Flo website to download your full PDF version.

You can easily specify many instruments and accessories described in this catalog. Sections covering our most popular items include all the technical data you need to know for most applications. To specify the appropriate item, simply follow the step-by-step procedure at the end of each description. Please feel free to contact Swanson Flo for help.

Magnetic Flowmeters (Magmeters): Principles and Applications

Magnetic flowmeter
Magnetic flowmeter (Foxboro)
Crucial aspects of process control include the ability to accurately determine qualities and quantities of materials. In terms of appraising and working with fluids (such as liquids, steam, and gases) the flowmeter is a staple tool, with the simple goal of expressing the delivery of a subject fluid in a quantified manner. Measurement of media flow velocity can be used, along with other conditions, to determine volumetric or mass flow. The magnetic flowmeter, also called a Magmeter, is one of several technologies used to measure fluid flow.

In general, magnetic flowmeters are sturdy, reliable devices able to withstand hazardous environments while returning precise measurements to operators of a wide variety of processes. The magnetic flowmeter has no moving parts. The operational principle of the device is powered by Faraday's Law, a fundamental scientific understanding which states that a voltage will be induced across any conductor moving at a right angle through a magnetic field, with the voltage being proportional to the velocity of the conductor. The principle allows for an inherently hard-to-measure quality of a substance to be expressed via the Magmeter. In a Magmeter application, the meter produces the magnetic field referred to in Faraday's Law. The conductor is the fluid. The actual measurement of a magnetic flowmeter is the induced voltage corresponding to fluid velocity. This can be used to determine volumetric flow and mass flow when combined with other measurements.

The magnetic flowmeter technology is not impacted by temperature, pressure, or density of the subject fluid. It is however, necessary to fill the entire cross section of the pipe in order to derive useful volumetric flow measurements. Faraday's Law relies on conductivity, so the fluid being measured has to be electrically conductive. Many hydrocarbons are not sufficiently conductive for a flow measurement using this method, nor are gases.

Magmeters apply Faraday's law by using two charged magnetic coils; fluid passes through the magnetic field produced by the coils. A precise measurement of the voltage generated in the fluid will be proportional to fluid velocity. The relationship between voltage and flow is theoretically a linear expression, yet some outside factors may present barriers and complications in the interaction of the instrument with the subject fluid. These complications include a higher amount of voltage in the liquid being processed, and coupling issues between the signal circuit, power source, and/or connective leads of both an inductive and capacitive nature.

In addition to salient factors such as price, accuracy, ease of use, and the size-scale of the flowmeter in relation to the fluid system, there are multiple reasons why Magmeters are the unit of choice for certain applications. They are resistant to corrosion, and can provide accurate measurement of dirty fluids - making them suitable for wastewater measurement. As mentioned, there are no moving parts in a Magmeter, keeping maintenance to a minimum. Power requirements are also low. Instruments are available in a wide range of configurations, sizes, and construction materials to accommodate various process installation requirements.

As with all process measurement instruments, proper selection, configuration, and installation are the real keys to a successful project. Share your flow measurement challenges of all types with a process measurement specialist, combining your process knowledge with their product application expertise to develop an effective solution.

The video below provides additional information about magnetic flowmeters.


Foxboro Field Device Capability

Foxboro instrumentation
Foxboro Process Instruments
For decades, the Foxboro brand has driven the development of various breakthrough measurement technologies: The first d/p cell, the dual-phase Digital Coriolis Mass Flowmeter, the DolpHinTM pH Sensor, and the Magnetic Flowmeter.

Foxboro instrumentation sets the industry standard for performance in a wide variety of measurement technologies:
  • Pressure transmitters that provide best-in-class accuracy levels and the longest standard and optional warranties in the industry 
  • Flowmeter technolgies: Magnetic, Vortex shedding and Coriolis that provide unparalleled solution for liquids, gases and steam 
  • Process analytical sensors that revolutionize pH and conductivity measurement 
  • Temperature transmitters providing accurate and reliable measurements in the harshest of environments 
  • Level measurement including LevelStar Buoyancy and LevelWave Radar devices for the widest choice of installation and applications 
  • Accutech provides wireless measurements where traditional instruments struggle with operation and budget goals 
Foxboro instruments provide accurate, reliable measurement and analysis of pressure, ow, level, and process analytical variables so you have the process control you need for maximum integration and interoperability - all at competitive prices, low cost of ownership, and 24-hour worldwide support from a single source.

For more information on Foxboro Field Instruments, visit Swanson Flo or call 800-288-7926.