Showing posts with label Montana. Show all posts
Showing posts with label Montana. Show all posts

Wednesday, March 7, 2018

Disassembly, Repair, and Rebuild of the Jordan Mark 78 Control Valve

Jordan Mark 78 Control Valve
The Jordan Mark 78 pneumatic control valve is designed for accurate performance and simplified maintenance. This versatile product can be used on a variety of applications, including viscous/corrosive liquids, process gases or steam in process or utility service.
  • Shutoff: ANSI Class IV or VI
  • Sizes: 1/2" – 2" (DN15 – DN50)
  • End Connections: Threaded, Flanged, Socket Weld, Butt-Weld
  • Body Materials: Bronze, Carbon Steel, Stainless Steel
  • Cv (Kv): up to 50 (up to 43)
  • Trim Materials: Stainless Steel, Monel, Hastelloy C, Alloy 20
  • Seat: ANSI Class IV (Hard Seat); ANSI Class VI Teflon (Soft Seat)
  • Control Ranges: 3-15 psi, 6-30 psi or split ranges (0,2-1,0 bar, 0,4-2,1 bar)
The video below provides a detailed demonstration of how to disassemble, repair, and rebuild the Mark 78 control valve.


Saturday, February 24, 2018

Understanding Explosion Proof Enclosures Used in Process Control

This is a short video that explains what an explosion-proof enclosure is, what defines it as “explosion-proof”, and the principle behind why its safe to use in explosive or combustible atmospheres.

“Explosion-proof" doesn't mean the enclosure can withstand the forces of an external explosion. It means that the enclosure is designed to cool any escaping hot gases (caused by an internal ignition) sufficiently enough as to prevent the ignition of combustible gases or dusts in the surrounding area.

Friday, February 16, 2018

Introduction to Industrial Control Systems

Industrial Control Systems Control systems are computer-based systems that are used by many infrastructures and industries to monitor and control sensitive processes and physical functions. Typically, control systems collect sensor measurements and operational data from the field, process and display this information, and relay control commands to local or remote equipment. In the electric power industry they can manage and control the transmission and delivery of electric power, for example, by opening and closing circuit breakers and setting thresholds for preventive shutdowns. Employing integrated control systems, the oil and gas industry can control the refining operations on a plant site as well as remotely monitor the pressure and flow of gas pipelines and control the flow and pathways of gas transmission. In water utilities, they can remotely monitor well levels and control the wells’ pumps; monitor flows, tank levels, or pressure in storage tanks; monitor water quality characteristics, such as pH, turbidity, and chlorine residual; and control the addition of chemicals. Control system functions vary from simple to complex; they can be used to simply monitor processes—for example, the environmental conditions in a small office building—or manage most activities in a municipal water system or even a nuclear power plant.

Industrial Control SystemsIn certain industries such as chemical and power generation, safety systems are typically implemented to mitigate a disastrous event if control and other systems fail. In addition, to guard against both physical attack and system failure, organizations may establish back-up control centers that include uninterruptible power supplies and backup generators.

There are two primary types of control systems. Distributed Control Systems (DCS) typically are Supervisory Control and Data Acquisition (SCADA) systems typically are used for large, geographically dispersed distribution operations. A utility company may use a DCS to generate power and a SCADA system to distribute it.

process instruments
Field devices and discreet controllers used in control systems
(Foxboro Schneider Electric).
A control system typically consists of a “master” or central supervisory control and monitoring station consisting of one or more human-machine interfaces where an operator can view status information about the remote sites and issue commands directly to the system. Typically, this station is located at a main site along with application servers and an engineering workstation that is used to configure and troubleshoot the other control system components. The supervisory control and monitoring station is typically connected to local controller stations through a hard- wired network or to remote controller stations through a communications network—which could be the Internet, a public switched telephone network, or a cable or wireless (e.g. radio, microwave, or Wi-Fi) network. Each controller station has a Remote Terminal Unit (RTU), a Programmable Logic Controller (PLC), DCS controller, or other controller that communicates with the supervisory control and monitoring station. The controller stations also include sensors and control equipment that connect directly with the working components of the infrastructure—for example, pipelines, water towers, and power lines. The sensor takes readings from the infrastructure equipment—such as water or pressure levels, electrical voltage or current—and sends a message to the controller. The controller may be programmed to determine a course of action and send a message to the control equipment instructing it what to do—for example, to turn off a valve or dispense a chemical. If the controller is not programmed to determine a course of action, the controller communicates with the supervisory control and monitoring station before sending a command back to the control equipment. The control system also can be programmed to issue alarms back to the operator when certain conditions are detected. Handheld devices, such as personal digital assistants, can be used to locally monitor controller stations. Experts report that technologies in controller stations are becoming more intelligent and automated and communicate with the supervisory central monitoring and control station less frequently, requiring less human intervention.

Swanson Flo can help you with control system questions or challenges. Reach them by calling 800-288-7926 or visiting

Tuesday, February 6, 2018

Foxboro Magnetic Flowmeter for Chemical and Process Industries

Based on Faraday’s law of induction, Foxboro magnetic meters are a reliable  ow measurement solution with a lower cost of ownership and maintenance, as well as  eld-proven stability to maximize the availability of  ow measurement.

With a wide range of liners and electrodes, the 9700A  owtube is ideal for the Chemical and Process industries. In combination with the IMT30A, IMT31A and IMT33A transmitters, Foxboro offers an innovative solution designed to meet the demands for all chemical applications such as:
  • Clean liquids
  • Mixing of chemicals
  • Demanding applications including corrosive, abrasive liquids • Rapid variation of the pH value
  • For slurries and pastes with high solids content
  • Drilling applications, mining slurries with large particles

See the embedded brochure below, or download your own PDF from this Swanson Flo link.

Wednesday, January 31, 2018

Butterfly Valves Used in Industrial and Commercial Applications

Automated butterfly control valve
Automated butterfly control valve.
Industrial process control valves are available in uncountable combinations of materials, types, and configurations. An initial step of the selection procedure for a valve application should be choosing the valve type, thus narrowing the selection field to a more manageable level. Valve "types" can generally be classified by the closing mechanism of the valve.

A butterfly valve is used for stopping or controlling flow of liquids or materials through pipes. The "butterfly" refers to the round, flat disk that allows for flow through the valve. Butterfly valves are a member of the "quarter-turn" valve family, meaning fully open to fully closed in 90 degrees rotation. They are opened and closed via a lever, manual gear operator, pneumatic actuator, or electric actuator. Butterfly valves can be used for on-off service and some varieties are used as control valves. Butterfly valves are generally less expensive than other high flow valves, lighter in weight, and take up less piping length. Since the disk is always in the flow path, butterfly valves always have a pressure drop across the valve.

There are two primary types of butterfly classifications:
  1. So called "rubber lined" butterfly valves (resilient seated) which are best suited for lower pressure, lower temperature, general purpose applications.
  2. High Performance Butterfly Valves (HPBV) which are designed to ANSI pressure classifications and are suited for more robust industrial applications.
Rubber lined butterfly valve
Rubber lined butterfly valve.
Rubber lined (resilient seated) butterfly valves come in a variety of seating materials, where the disk "jams" in to the seat. This provides a tight closure, but also causes wear on the seat. Seat replacement is part of normal maintenance on these valves. Another characteristic of rubber lined butterfly valves are higher starting and ending torques due to the "jamming" and "unjamming" of the disk in the seat.

High performance butterfly valves have precision machined teflon, or metal seats, and are slightly offset as to lessen the amount of seat-to-disk interference. The disc still is pushed against he seat, but in a much more controlled and measured manner. Seat wear is still an issue, but not like rubber lined valves. Seating and unseating torque effects are much less as well.

Triple offset butterfly
Triple offset butterfly.
A variation of the HPBV is the triple eccentric butterfly valve which uses a metal seat and a "triple-offset" design, best described as the disk coming "off and away" from the seat. This assures that the disk only contacts the seat at time of full closure, reducing wear on the metal seat. These valves provide excellent shut off in critical applications.

Butterfly valves come in three body styles:
  1. Wafer body, whereby the valve is "sandwiched" and held in place between two pipe flanges and are suitable for lower pressure applications.
  2. Lug style bodies that have threaded "lugs" cast in to the body of the valve and bolts are used to secure the valve for end of line service or keeping the valve in place when the piping is disassembled.
  3. ASME flanged butterfly valves where the valve body is in-between two ASME flanges.
Butterfly valves, like other valve types, have applications where selection and design of one style outperforms another style. Careful consideration and consultation with a valve expert is a first step toward making a good selection. Combine your process know-how with the product application expertise of a professional sales engineer to produce the best solutions to your process control challenges.

Saturday, January 27, 2018

Flowserve Valtek MaxFlo 4 Eccentric Rotary Plug Control Valve

Valtek MaxFlo 4 Eccentric Rotary Plug Control Valve
The Flowserve Valtek MaxFlo 4 control valve is a high performance eccentric rotary plug valve designed for the process industry. It features a large capacity, standard hardened trim and superior shaft blow-out protection.

This valve is available in sizes 1 through 12 inches, ASME Class 150, 300 and 600 as well as DIN PN 10, PN16, PN 25, PN40 and PN63. An optional ISA 75.08.01 or DIN EN 558 series 1 long-pattern body makes this valve an easy drop-in replacement for a globe control valve. 

Founded in 1960, Swanson Flo has long maintained our position as an industry leader in process automation with unmatched project success leveraging industry preferred products and services. 


Saturday, January 20, 2018

Worm Gear Valve Operators

Worm gear operator
Worm gear operator (WedgeRock)
Every industrial valve needs a means to open and close, allowing the process to flow.  Worm gear actuators provide a mechanical advantage to make hand operation possible for most quarter-turn butterfly, ball, and plug valves as well as quarter-turn and multi-turn dampers. Gears provide mechanical advantage to an operator providing the force required to open and close the valve.  Torque can be increased or decreased by changing the size of the hand wheel. Manual worm gear operators are relatively inexpensive and require little involvement beyond their in the process line.

Download the WedgeRock RW Series IOM PDF here.

Tuesday, January 9, 2018

Understanding Biofuels

Ethanol plant
Ethanol Plant
Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing. Today, ethanol is made from starches and sugars, but scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter.

Ethanol can also be produced by a process called gasification. Gasification systems use high temperatures and a low-oxygen environment to convert biomass into synthesis gas, a mixture of hydrogen and carbon monoxide. The synthesis gas, or "syngas," can then be chemically converted into ethanol and other fuels.

Ethanol is mostly used as blending agent with gasoline to increase octane and cut down carbon monoxide and other smog-causing emissions. Some vehicles, called Flexible Fuel Vehicles, are designed to run on E85, an alternative fuel with much higher ethanol content than regular gasoline.

Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. Research into the production of liquid transportation fuels from microscopic algae, or microalgae, is reemerging. These microorganisms use the sun's energy to combine carbon dioxide with water to create biomass more efficiently and rapidly than terrestrial plants. Oil-rich microalgae strains are capable of producing the feedstock for a number of transportation fuels—biodiesel, "green" diesel and gasoline, and jet fuel—while mitigating the effects of carbon dioxide released from sources such as power plants.

Swanson Flo, and its subsidiary BioFuels Automation, has decades of experience in the renewable fuels industry. Their team is responsible for the products in over 90% of plants nationwide and are uniquely positioned to keep the existing bio-refineries operational while minimizing downtime. For more information about the processing of renewable fuels, contact Swanson Flo by calling 800-288-7926 or visiting

Thursday, December 28, 2017

Industrial Valve Actuators: An Overview

Pneumatic Actuator
Pneumatic Actuator
Valves are essential to industries which constitute the backbone of the modern world. The prevalence of valves in engineering, mechanics, and science demands that each individual valve performs to a certain standard. Just as the valve itself is a key component of a larger system, the valve actuator is as important to the valve as the valve is to the industry in which it functions. Actuators are powered mechanisms that position valves between open and closed states; the actuators are controllable either by manual control or as part of an automated control loop, where the actuator responds to a remote control signal. Depending on the valve and actuator combination, valves of different types can be closed, fully open, or somewhere in-between. Current actuation technology allows for remote indication of valve position, as well as other diagnostic and operational information. Regardless of its source of power, be it electric, hydraulic, pneumatic, or another, all actuators produce either linear or rotary motion under the command of a control source.

Thanks to actuators, multiple valves can be controlled in a process system in a coordinated fashion; imagine if, in a large industrial environment, engineers had to physically adjust every valve via a hand wheel or lever! While that manual arrangement may create jobs, it is, unfortunately, completely impractical from a logistical and economic perspective. Actuators enable automation to be applied to valve operation.
Electric actuator
Electric Actuator

Pneumatic actuators utilize air pressure as the motive force which changes the position of a valve. Pressurized-liquid reliant devices are known as hydraulic actuators. Electric actuators, either motor driven or solenoid operated, rely on electric power to drive the valve trim into position. With controllers constantly monitoring a process, evaluating inputs, changes in valve position can be remotely controlled to provide the needed response to maintain the desired process condition.

Large butterfly valve with actuator
Large butterfly valve with actuator.
Manual operation and regulation of valves is becoming less prevalent as automation continues to gain traction throughout every industry. Valve actuators serve as the interface between the control intelligence and the physical movement of the valve. The timeliness and automation advantages of the valve actuators also serve as an immense help in risk mitigation, where, as long as the system is functioning correctly, critical calamities in either environmental conditions or to a facility can be pre-empted and quickly prevented. Generally speaking, manual actuators rely on hand operation of levers, gears, or wheels, but valves which are frequently changed (or which exist in remote areas) benefit from an automatic actuator with an external power source for a myriad of practical reasons, most pressingly being located in an area mostly impractical for manual operation or complicated by hazardous conditions.

Thanks to their versatility and stratified uses, actuators serve as industrial keystones to, arguably, one of the most important control elements of industries around the world. Just as industries are the backbones of societies, valves are key building blocks to industrial processes, with actuators as an invaluable device ensuring both safe and precise operation.

Tuesday, December 19, 2017

Visual Demonstration of Cavitation and its Adverse Effects on Control Valves and Pumps

Fluid passing through a control valve experiences changes in velocity as it enters the narrow constriction of the valve trim (increasing velocity) then enters the widening area of the valve body downstream of the trim (decreasing velocity). These changes in velocity result in the fluid molecules’ kinetic energies changing as well. In order that energy be conserved in a moving fluid stream, any increase in kinetic energy due to increased velocity must be accompanied by a complementary decrease in potential energy, usually in the form of fluid pressure. This means the fluid’s pressure will fall at the point of maximum constriction in the valve (the vena contracta, at the point where the trim throttles the flow) and rise again (or recover) downstream of the trim:

If fluid being throttled is a liquid, and the pressure at the vena contracta is less than the vapor pressure of that liquid at the flowing temperature, the liquid will spontaneously boil. This is the phenomenon of flashing. If, however, the pressure recovers to a point greater than the vapor pressure of the liquid, the vapor will re-condense back into liquid again. This is called cavitation.

As destructive as flashing is to a control valve, cavitation is worse. When vapor bubbles re-condense into liquid they often do so asymmetrically, one side of the bubble collapsing before the rest of the bubble. This has the effect of translating the kinetic energy of the bubble’s collapse into a high-speed “jet” of liquid in the direction of the asymmetrical collapse. These liquid “microjets” have been experimentally measured at speeds up to 100 meters per second (over 320 feet per second). What is more, the pressure applied to the surface of control valve components in the path of these microjets is intense. Each microjet strikes the valve component surface over a very small surface area, resulting in a very high pressure (P = F/A ) applied to that small area. Pressure estimates as high as 1500 newtons per square millimeter (1.5 giga-pascals, or about 220000 PSI!) have been calculated for cavitating control valve applications involving water.

Sunday, December 10, 2017

Water Quality Analyzers for Ultra-pure, Industrial, and Drinking Water Systems

Dissolved Oxygen Analyzer
In the operation of an industrial process, there can be any number of reasons for analyzing water quality. Safety, regulatory compliance, operating efficiency, and process control are a few of the broader categories.

Waltron has been an active participant in the water chemistry and analysis field for over 100 years. The company's focus started with boiler feedwater and has expanded over many years to include online analyzers for process water in a broad range of industries.
  • Power Generation
  • Petrochemical
  • Pulp and Paper
  • Water and Wastewater
  • Electronics and Semiconductor
  • Environmental
  • Pharmaceutical
Waltron process water analyzers provide ease of use, minimal maintenance, and a low service life, delivering a low total cost of ownership. Various technologies are applied, providing specific and accurate analysis for a range of contaminants in ultra-pure, industrial, or drinking water systems.
  • Copper
  • Dissolved Hydrogen
  • Dissolved Oxygen
  • Ethylene Glycol
  • Hardness
  • Hydrazine
  • Iron
  • Oil in Water
  • Phosphate
  • Silica
  • Sodium
Included below is a short version product line sheet, showing the company's line of analyzers. Share your water quality monitoring challenges with a product specialist. Incorporating your process knowledge with their expertise will produce the best solution.

Thursday, November 30, 2017

Schneider Electric Foxboro Measurement and Control Product Catalog

Measurement and Control Product CatalogSchneider Electric / Foxboro provides customers a complete solution - from instruments in the field to the control room - to enable customers to optimize their assets-people, equipment, plant. With a history of innovation, Foxboro Field Devices provides solutions across a wide range of industries, including Energy, Oil, Gas & Refining, Renewable Fuels, Nutrition And Life Sciences, Process Automation, Water & Wastewater.

Foxboro / Schneider Electric range of products in Measurement and Instrumentation include:
  • Flow
  • Level
  • Pressure
  • Process Liquid Analytical
  • Temperature
  • Control
  • Data Acquisition & Configurator
  • Pneumatic
  • Valve Positioners
  • Accutech
Visit this page on the Swanson Flo website to download your full PDF version.

You can easily specify many instruments and accessories described in this catalog. Sections covering our most popular items include all the technical data you need to know for most applications. To specify the appropriate item, simply follow the step-by-step procedure at the end of each description. Please feel free to contact Swanson Flo for help.

Monday, November 27, 2017

New Product Alert: The Jordan Mark 75PTP Sliding Gate Control Valve

Jordan Mark 75PTP
Jordan Mark 75PTP
The Jordan Mark 75PTP is a Mark 75 wafer style control valve with an 80mm (1" - 2") Stainless Steel Piston Actuator. The Gemu cPOS Smart Positioner is standard and required for control applications. For on/off service, the valve may supplied without a positioner. JVCV Should be used for sizing selection.

The Mark 75PTP provides great capacity in a com-pact wafer style body. A 2" Mark 75PTP provides 72 Cv (62 Kv). (Refer to Cv Capacity Charts for information concerning all line sizes).

The Mark 75PTP features a 'T' slot design connection to the disc. This connection allows for quick and easy reversing of functions. Instead of having to go into the actuator to change action, all that is needed in a Mark 75PTP is to rotate the seats 180°. With this simple rotation, the valve can go from reverse acting to direct acting (or vice versa).The stroke length of the Mark 75PTP is a slightly longer stroke than standard sliding gate valves. This longer stroke enables better turndown. Combined with the capacity of the Mark 75PTP, the in-creased turndown makes for a great control valve.

Saturday, November 18, 2017

Limitorque Actuator Product Range

Limitorque has 90 years experience providing electric actuators to safely operate automated valves that protect people and property. The products that Limitorque offer are:
  • Intrusive Multi-Turn Actuators - L120 and SMB Series
  • Non-Intrusive Multi-Turn Actuators - MX Series
  • Non-Intrusive Quarter-Turn Electric Actuators - QX Series
  • Gas Powered Actuators - LDG Direct Gas Actuator
  • Hydraulic Actuators - LHS and LHH Series
  • Pneumatic Actuators - LPS and LPC Series
  • Multi-Turn Gearboxes - V Series and SR Series
  • Quarter-Turn Gearboxes - WG Series and HBC Series
For more information on Limitorque watch the video below and visit or call 800-288-7926.

Wednesday, November 8, 2017

Understanding Linear, Equal Percentage, and Quick Open Control Valve Flow Curves

Flowserve Valtek Control Valve
Flowserve Valtek Control Valve
Flow characteristics, the relationship between flow coefficient and valve stroke, has been a subject of considerable debate. Many valve types, such as butterfly, eccentric disk and ball valves, have an inherent characteristic which cannot be changed (except with characterizable positioner cams). Flow characteristics of globe valves can be determined by the shape of the plug head.

The three most common types of flow characteristics are quick opening, equal percentage and linear. The figure below shows the ideal characteristic curve for each. These characteristics can be approximated by contouring the plug. However, inasmuch as there are body effects and other uncontrollable factors, plus the need for maximizing the flow capacity for a particular valve, the real curves often deviate considerably from these ideals. When a constant pressure drop is maintained across the valve, the characteristic of the valve alone controls the flow; this characteristic is referred to as the “inherent flow characteristic.” “Installed characteristics” include both the valve and pipeline effects. The difference can best be understood by examining an entire system.

Equal Percentage
Control valve flow curves
Control valve flow curves.

Equal percentage is the characteristic most commonly used in process control. The change in flow per unit of valve stroke is directly proportional to the flow occurring just before the change is made. While the flow characteristic of the valve itself may be equal percentage, most control loops will produce an installed characteristic approaching linear when the overall system pressure drop is large relative to that across the valve.


An inherently linear characteristic produces equal changes in flow per unit of valve stroke regardless of plug position. Linear plugs are used on those systems where the valve pressure drop is a major portion of the total system pressure drop.

Quick Open

Quick open plugs are used for on-off applications designed to produce maximum flow quickly.

This information provided courtesy of Flowserve Valtek. Share your control valve requirements and challenges with a valve specialist, combining your own process knowledge and experience with their product application expertise to develop effective solutions.

Wednesday, October 25, 2017

Instruction Manual for Bronkhorst Mass Flow Pressure Meters and Controllers for Gases and Liquids

Bronkhorst MFC
Bronkhorst MFC
Bronkhorst offers the widest product range of thermal mass flow meters and controllers on the market. Numerous styles of both standard and specialized instruments can be offered for applications in laboratory, industrial and hazardous areas. Also, Bronkhorst specializes in (ultra) low flow Coriolis meters and controllers for liquids and gases.

For your convenience, below is the instruction manual for mass flow meters and controllers.

Contact Swanson Flo at 800-288-7926 or visit for more information on Bronkhorst products.

Monday, October 23, 2017

Solenoid Valves - How They Work

Solenoid valve
Solenoid valve, 2-Way, Brass
Solenoid valves are used throughout many commercial, municipal, industrial, and even residential settings to manage fluid flow. What we refer to as a solenoid valve is an integrated valve and actuator. The actuator, or solenoid, operates via electric current flowing through its helix shaped coil. Energizing the coil with a control signal produces a magnetic field, which then actuates the valve mechanism. Depending on the port configuration of the valve, solenoid valves can either function as two way flow controllers or as diverters in a process system, If the valve contains two ports, then the valve is an on/off valve. If the valve contains three or more ports, then the valve directs the flow of a fluid in the process system. Thanks to their flexibility, reliability, and need for only a small amount of control power, solenoid valves are a frequently used fluid process control device.

The solenoid used in a solenoid valve functions as a converter for electrical energy, using the supplied electrical energy to produce mechanical energy. Metal or elastomeric seals on solenoid valves can be coupled with electrical interfaces, allowing for relatively easy operation by the process controller. The valves typically use a metal plug to cover up a hole, and when pressure from the process fluid is applied to the valve, the pressure difference causes the solenoid valve to be in its normal position. Instead of referring to two directions of flow, the two-way solenoid valves are named two-way because these valves contain two valve ports which the fluid uses to travel.

Three way valves, similar to the name of the two-way valve, have three fluid ports. In an application example, these ports could correspond to pressure, exhaust, and cylinder. In a pneumatic system, these would be used for compressed air supply, vent, and the actuating mechanism. Regardless of the application, the valve function is the same, connecting the inlet port to one of two outlet ports. The selection array of solenoid valves for commercial and industrial use is vast, with variants suitable for a wide range of media, pressure, temperature, and operation sequence.

Pneumatic and hydraulic systems are typical applications for solenoid valves, as are processes such HVAC, where solenoid valves help control liquid refrigerant, as well as suction and hot gas lines. Solenoid valves are a popular fluid flow control options used in processing industries.

Share your fluid control requirements and challenges with application experts, combining your own process knowledge and experience with their product application expertise to develop effective solutions.

Watch the video below for more on how solenoid valves work.

Monday, October 9, 2017

Understanding the Relationship between Hydrostatic Pressure, Density and Level

Hydrostatic pressure
The pressure exerted by a fluid material in a vessel is directly proportional to its height multiplied by its density.

Hydrostatic pressure, or head pressure, is the force produced by a column of material. As the height of the material changes, there is proportional change in pressure. To calculate hydrostatic pressure, the density of the material is multiplied by the height of the column. The level of fluid in a column can be determined by dividing the pressure value by the density of the material.

To find pressure in a column of water, a gauge placed at the bottom of the vessel. With the water having a density of 0.0361 pounds per cubic inch, the level of the fluid is calculated by dividing the head pressure by the density of the fluid.

An example to determine the level measurement of a column of water that is 2 feet tall in diameter of 0.5 feet is solved by the following steps. The first step is measuring the weight of the vessel. Next measure the weight of the vessel with fluid. The weight of the fluid is determined by subtracting the weight of the vessel from the weight of the vessel with fluid. The volume of the fluid is then derived by dividing the fluid weight by the density of the fluid. The level of the fluid is finally calculated by dividing the volume of the fluid by the surface area.

Hydrostatic pressure can only be calculated from an open container. Within a closed vessel, or pressurized vessel, the vapor space above the column of material adds pressure, and results in inaccurate calculated values. The vessel pressure can be compensated for by using a differential pressure transmitter. This device has a high pressure side input and a low pressure side input. The high-pressure input is connected to the bottom of the tank to measure hydrostatic pressure. The low-pressure input of the differential pressure transducer is connected to the vapor space pressure. The transducer subtracts the vapor pressure from the high-pressure. Resulting is a value that represents the hydrostatic head proportional to the liquid level.

Friday, September 29, 2017

Electric Power Generation Using Coal

Electric Power Generation Using Coal
Coal Fired Power Plant
Electricity is generated at most electric power plants by using mechanical energy to rotate the shaft of electromechanical generators. The mechanical energy needed to rotate the generator shaft can be produced from the conversion of chemical energy by burning fuels or from nuclear fission; from the conversion of kinetic energy from flowing water, wind, or tides; or from the conversion of thermal energy from geothermal wells or concentrated solar energy. Electricity also can be produced directly from sunlight using photovoltaic cells or by using a fuel cell to electrochemically convert chemical energy into an electric current.

The combustion of a fossil fuel to generate electricity can be either: 1) in a steam generating unit (also referred to simply as a “boiler”) to feed a steam turbine that, in turn, spins an electric generator: or 2) in a combustion turbine or a reciprocating internal combustion engine that directly drives the generator. Some modern power plants use a “combined cycle” electric power generation process, in which a gaseous or liquid fuel is burned in a combustion turbine that both drives electrical generators and provides heat to produce steam in a heat recovery steam generator (HRSG). The steam produced by the HRSG is then fed to a steam turbine that drives a second electric generator. The combination of using the energy released by burning a fuel to drive both a combustion turbine generator set and a stream turbine generator significantly increases the overall efficiency of the electric power generation process.

Coal is the most abundant fossil fuel in the United States and is predominately used for electric power generation. Historically, electric utilities have burned solid coal in steam generating units. However, coal can also be first gasified and then burned as a gaseous fuel. The integration of coal gasification technologies with the combined cycle electric generation process is called an integrated gasification combined cycle (IGCC) system or a “coal gasification facility”. For the remainder of this document, the term “electric generating unit” or “EGU” is used to mean a solid fuel-fired steam generating unit that serves a generator that produces electricity for sale to the electric grid.

Tuesday, September 12, 2017

7 Important Considerations When Applying Inline, Spring-loaded Check Valves

Inline Spring-loaded Check Valve
Inline Spring-loaded Check Valve
(courtesy of CheckAll Valve)
1) Installation and Mounting
Inline, spring loaded check valves can be used in horizontal or vertical applications with proper spring selection. This is most evident in vertical flow down installations. The spring selected must be heavy enough to support the weight of the trim in addition to any column of liquid desired to be retained.

2) Elbow's, Tee's or other Flow Distorting Device's
Inline, spring loaded check valves are best suited for use with fully developed flow. Although there are many factors affecting the achievement of fully developed flow (such as media, pipe roughness, and velocity) usually 10 pipe diameters of straight pipe immediately upstream of the valve is sufficient. This is particularly important after flow distorting devices such as elbows, tees, centrifugal pumps, etc.

3) Valve Material Selection
There are many factors that influence the resistance of materials to corrosion, such as temperature, concentration, aeration, contaminants, and media interaction/reaction. Special attention must be paid to the process media and the atmosphere where inline check valves are applied. It is always recommended that an experienced application tech be consulted before installation.

4) Seat Material Selection

Several seat material options are available for inline, spring loaded check valves. An allowable leakage rate associated with the “metal-to-metal” as well as the PTFE o-ring seat, is 190 cc/min per inch of line size, when tested with air at 80 PSI. Resilient o-ring seats can provide a “bubble tight” shut-off (no visible leakage allowed at 80 PSI air).

5) Sizing and Spring Selection
It is very important to size check valves properly for optimum valve operation and service life. Sizing accuracy requires the valve be fully open, which occurs when the pressure drop across the valve reaches or exceeds three times the spring cracking pressure. Again, it is recommended that an experienced application tech be consulted for help with sizing.

6) Shock-Load Applications
Inline, spring loaded check valves are not designed for use in a shock-load environment, such as the discharge of a reciprocating air compressor. These types of applications produce excessive impact stresses which can adversely affect valve performance.

7) Fluid Quality
Inline, spring loaded check valves are best suited for clean liquids or gasses. Debris such as sand or fibers can prevent the valve from sealing properly or it can erode internal components or otherwise adversely affect valve travel. Any particles need to be filtered out before entering the valve.