An Excellent Industrial Valve Glossary for the New Engineer, Technician, Maintenance Person or Buyer

Here's a great resource (courtesy of Jordan Valve) for the new process engineer, plant maintenance person, industrial valve buyer, or service technician. This document is called "A Glossary of 864 Valve Terms". This may be the most comprehensive valve glossary we've ever seen. We hope you find it useful.

Attend the 2019 BioFuels Automation University Ethanol Maintenance Classes

The 2019 BioFuels Automation University schedule is now released. Interested parties should review the course itineraries and plan to attend.

BioFuels Automation University provides Best Practice Certification courses designed to enable participants to learn directly from some of the industry’s top technical professionals and gain valuable hands-on training to best utilize the technology driving your facilities.

Ethanol Maintenance 101

A strong combination of concepts and best practice Hands-on Training – this course really delivers for insight and troubleshooting skills for instrumentation and valve technologies. BioFuels Automation University experts stand ready to help define your needs and craft a customized program.

Two Sessions available in 2019:
  • Jun 20 - 21, 8:00 AM 
  • Oct 24 - 25, 8:00 AM
Day One: Instrumentation - Flow Measurement, Temperature Measurement, Pressure Measurement, Level Measurement, Electro-Chemical Measurement

Day Two: Valves - Automated On/Off Valves, Valve Monitors, Control Valves, Positioners, Communication Protocols, Shop Tools - Hands On

Fee: $1,350 per participant. Fee includes lodging and meals. Payment information required to complete registration.

Location: BioFuels Automation University Training Center, 151 Cheshire Lane, North Plymouth, Minnesota

Ethanol Maintenance 201

All devices and technologies from 101 will covered in-depth at the master technician level. Course structure is 80% hands-on and centered around your specific plant needs. To maximize the impact of this course, extensive application challenges as well as Q&A sessions are conducted. BioFuels Automation University experts stand ready to help define your needs and craft a customized program.

This class will take you through an analysis of the complete control loop, providing you with a deeper understanding of the relationship between the three segments of a control loop. Sensing Element, PID Controller, Final Control Element, C (control) DCS, I and V.

Two Sessions available in 2019:
  • July 25 - 26, 8:00 AM
  • Dec 05 - 06, 8:00 AM
Space Limited to 10 participants for maximum comprehension. Class led by highly experienced service professionals, 80% hands-on practical application.

Topics covered: Loop Configurations, Controller PID Tuning: Theory and Practical Application Instruments, Advanced Valves

Fee: $2,250 per participant. Fee includes lodging and meals. Payment information required to complete registration.

Location: BioFuels Automation University Training Center, 151 Cheshire Lane, North Plymouth, Minnesota.

The Flowserve Valtek MaxFlo 4 Eccentric Rotary Plug Control Valve

The Flowserve Valtek MaxFlo 4 control valve is a high performance eccentric rotary plug valve designed for the process industry. It features a large capacity, standard hardened trim and superior shaft blow-out protection. This valve is available in sizes 1 through 12 inches, ASME Class 150, 300 and 600 as well as DIN PN 10, PN16, PN 25, PN40 and PN63.

An optional ISA 75.08.01 or DIN EN 558 series 1 long-pattern body makes this valve an easy drop-in replacement for a globe control valve.

Schneider Electric Foxboro Pressure Transmitter Models 05S/10S/50S

Available in absolute pressure, differential pressure and gauge pressure, the new Schneider Electric Foxboro Models 05S/10S/50S pressure transmitters are designed to make your process more profitable by giving you the opportunity to select your transmitter at the best ratio of performance/price for your application.

Innovative FoxCal™ technology, accuracy expressed as a percentage of reading, 400:1 turndown, Safety SIL2 certification, are some of the exceptional features in the 05S/10S/50S family.
For more information, contact:

Swanson Flo

Types of Electrical Connectors Used for Hamilton Process Analytics Sensors

VP – This is a common connector used throughout the Hamilton sensor product line. VP is abbreviation for “VarioPin”. The VP designation often includes a number referring to the number of exposed poles on connector head. Example VP6 = 6 pole.

K8 connectors are typically used on pH / ORP sensors which lack temperature compensation. These connectors have a two pole design comprised of the center core and outer metallic threaded connection.

S7 & S8 – S7 and S8 connectors are typically found on sensors which no temperature compensation. They are the same basic design however S8 connectors have PG13.5 mounting threads, while S7 connectors do not. These connectors are recessed thus care must be taken to avoid moisture getting trapped which could lead to a short circuit.

M12 - Metallic threaded M12 connectors are found on Dissolved Oxygen Sensors and Cell Density products. M12 adapters have either 4 or 8 poles hidden within the socket. Since the poles are recessed avoid getting moisture inside the connection.

T82 – The T82 connector is sometimes known as a D4 connector. It uses a twist lock design to secure the cable to the sensor. These connectors are less common.

Memosens – These inductive electrical connectors are only found on digital pH sensors using Memosens technology. They use a twist lock design to affix the cable. There are no exposed metallic
connections on Memosens connectors.

For more information on Hamilton ProcessAnalytics contact Swanson Flo.

Changing the Trim on the Jordan / LowFlow Mark 708 Series Control Valve

The LowFlow Mark 708 is a very popular and accurate control available for fractional flow services: whether for pilot plant installations, test stands, R & D facilities or for specialized processes such as dosing, injection and venting applications. This video demonstrates how to change the trim on the Jordan / LowFlow Mark 708 Series Control Valve.

Swanson Flo

A Visual Understanding of Steam Induced Water Hammer

When improperly drained of condensate in a high pressure steam main fills with condensate and completely surrounds the steam, an implosion takes place causing devastating water hammer.

Draining condensate and keeping it away from the steam by using proper steam trapping equipment will prevent this from happening.

The following video, courtesy of TLV, dramatically demonstrates the principle behind water hammer and its potentially devastating effects.

Swanson Flo